2022/05/16-21

WEEK 19

TAPA and VARIATIONS 3

Grant Fikes Tapa
Zoltán Horváth Tapa
Murat Can Tonta Tapa
Prasanna Seshadri Tapa
Serkan Yürekli Pata
Zoltán Horváth Tapa (Black Hole)

GRANDMASTER PUZZLES

Tapa by Grant Fikes

${ }^{1} 1_{1}$			1_{3}						
								5	
					3_{3}				
	5					1_{3}^{1}			
			1_{3}					1_{5}	
				$1_{1}^{1} 1$					
	1_{3}								
						1,1			3

What Are the Odds?

Tapa by Zoltán Horváth

Tapa by Murat Can Tonta

Tapa by Prasanna Seshadri

Pata by Serkan Yürekli

Rules: Variation of Tapa rules. The clue numbers refer to the groups of unshaded segments around that cell. Cells with numbers count as unshaded cells for adjacent clues. All other rules for the shaded Tapa are the same as usual.

${ }^{1} 1$						
				1_{1}^{1}		
	2_{2}					
		1_{2}		1_{2}		
					2	
		$1_{1} 1$				
						1

Example by Serkan Yürekli

Singularity at the Black Hole

Tapa (Black Hole) by Zoltán Horváth

Rules: Standard Tapa rules. Also, each row and each column must contain N black holes on the Tapa wall. For the purposes of surrounding clues, a cell with a black hole counts as M consecutive shaded cells instead of 1 . (If M equals zero, a cell with a black hole does not divide the group of shaded cells around a clue into different shaded groups; that cell is simply not counted.) Black holes may touch each other.

${ }^{1} 3$					4
					4
${ }^{3} 6$					
3					1

$\{\mathrm{N}=2, \mathrm{M}=3\}$

Example by Serkan Yürekli

					12					
	7								6	
			${ }^{2} 3$				${ }^{1} 5$			
		1_{2}^{1}						${ }_{1} 1$		
				5		${ }^{1} 4$				
${ }_{1}$										${ }^{1} 2$
				5		${ }^{1} 4$				
		$1_{1} 1$						${ }_{3} 1$		
			$1_{2} 1$				$1_{2}{ }^{2}$			
	2								${ }^{1} 3$	
					${ }^{1} 2$					

Blind Spots
$\{\mathrm{N}=1, \mathrm{M}=0\}$

